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I. The problem of elastic deformation of an inhomogeneous medium is of great practical 
importance. It is known that the structure of a medium has a significant effect on deforma- 
tion processes: the size and form of inhomogeneities, composition and physical properties of 
inclusions, etc. [I]. A saturated granular medium is an idealized model of a two-phase soil, 
which permits some consideration of structure. In [2], four types of elastic spheres, dif- 
fering in size, were used to model the granular medium. Packing was assumed to be arbitrary. 
A contribution to deformation was considered only from the contact regions of spheres of one 
kind. An expression for the change in volume of a region including N spheres and liquid was 
obtained from energy considerations. A model consisting of ordered equal spheres was used 
in [3] to calculate porosity and the filtration coefficient, and in [4] to calculate the 
pressure on a fixed support wall. Effective moduli were determined for elastic spheres im- 
mersed in an elastic liquid in [5]. Cubical packing was used with assumption of absence of 
stress in the horizontal plane. The question under consideration has recently found an ap- 
plication in transmission of chemical materials through granular catalysts [6]. In [7] a 
generalized approach was developed for description of deformation of a saturated porous me- 
dium with consideration of filtration flows. However, interphase interaction was considered 

by another method. 

The present study will calculate the solid phase stress tensor as a function of liquid 
pressure in the pores and external (mineral) pressure. The nonlinear character of deforma- 
tion of an elastic granular medium will be demonstrated. 

I. We will consider a volume V of a granular medium saturated by a liquid. Let the 
elastic grains of spherical form be equal in size and arranged in an arbitrary manner. These 
grains are submerged in a compressible viscous liquid. Figure I shows a portion of the volume 

V including one sphere and contact regions. 

We call attention to the fact that the medium under study here has certain unique fea- 
tures which distinguish it from other structure in the class of heterogeneous media [7]. : 

I. Continuity of both component phases. As a consequence, it is possible for the liq- 
uid pressure p and the stress Fij applied only to the solid phase (mineral pressure) through 

the contact regions to change independently. 

2. Effect of the medium structure on the amount of deformation of the component phases. 
Because of this the value of the mean stress in the solid phase is not equal to the external 
Fij. The difference is determined by interaction between the phases as well as the structure 
of the interphase surface. Similarly, for the liquid the change in volume of the pore space 
upon deformation does not correspond exactly to the change in volume of liquid in the pores, 
which leads to either a discontinuity in the mean stresses in the phases, or to flow of liquid 
into the adjacent elementary volume V. In reality, the pore space is limited by the inter- 
phase boundary S,, which deforms together with the change in the volume V. On the surface 

S, the stresses are always equal: 

- -  p6i# = T~#ls , ,  

where Tij is the solid phase stress tensor. Let the deformation of the solid phase obey 
Hooke's law 61 = o[3E(I -- 2~)] -I (o = Tit + T22 + T33 is the sum of the normal stresses, 
is the Poisson coefficient, and E is the modulus of elasticity), while the liquid deformation 

obeys Tate's equation 

O~=~(l/a) lnlp/i,,, +-11 (1 .1)  

(6 is the relative change in volume If V0 is the volume before deformation, then in the 
general case V = V0(1 -- 6). For the quantities 6 and P we have the relationship 6 = I- P0/P 
(where V0, P0, p0, ~ are constants). Hence we find the relationship between 61, 62 on the 
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However ,  t h e  l i q u i d  d e f o r m s  due to  t h e  c h a n g e  i n  t h e  t o t a l  v o l u m e  V and  t h e  c h a n g e  i n  
v o l u m e  o f  t h e  g r a i n s .  T h i s  f a c t  d o e s  n o t  a l l o w  e x a c t  c a l c u l a t i o n  of  t h e  p o r o s i t y  u n d e r  d e -  
f o r m a t i o n .  I n  [ 2 ,  8] a t t e m p t s  we re  made to  c a l c u l a t e  t h e  c h a n g e  i n  p o r o s i t y  Am, b u t  t h e s e  
were  v e r y  a p p r o x i m a t e .  Fo r  e x a m p l e ,  i n  [8]  i t  was a s s u m e d  t h a t  01 = @2, w h i c h  c a n  o n l y  o c c u r  
i n  t h e  s p e c i a l  c a s e  i n  w h i c h  t h e  c o m p r e s s i b i l i t i e s  o f  t h e  p h a s e s  a r e  c l o s e  i n  v a l u e .  

We w i l l  o b t a i n  r e l a t i o n s h i p s  a p p l i c a b l e  t o  t h e  mos t  g e n e r a l  c a s e  o f  d e f o r m a t i o n  o f  a 
s a t u r a t e d  g r a n u l a r  medium.  From t h e  a d d i t i v e n e s s  of  m a s s e s  of  e l e m e n t s  o c c u p y i n g  t h e  v o l u m e  
V (M = M I + M2) and  t h e  a d d i t i v e n e s s  of  t h e  c h a n g e  i n  v o l u m e s  a f t e r  d e f o r m a t i o n  (kV = AV1 + 
AV2) it follows that 

p = pl(t - - m ) +  p~m, 0 = 0~(1--;,~o)+ O~,;o. 

Substituting in Eq. (1.2) m0 = V0z/V0, and expressions relating the quantities V and 8, we can 
prove the validity of Eq. (1.2). 

We note that by choosing un0rdered orientation of the grains, we lose the possibility 
of exact calculation of the porosity itself. However this does not disallow assumption of 
the existence of some definite order around each individual particle. This can be justified 
by data from statistical analysis of the locations of contact areas. Thus, the choice of 
symmetrical disposition of the contact surfaces on a grain serves only to make calculations 

convenient. It is known that in deformation of the medium under study here either conserva- 
tion of the masses of the solid and liquid component phases within a unit volume or loss of 

such conservation may occur [7]. We will call the first case deformation of the first sort. 
It is obvious that this case can be realized only at a deformation rate such that no over- 

flow of liquid can occur. Then, as was noted earlier, stress quality cannot be established 
in the phases. When stress equality does exist, the value of the porosity must change in 
a completely defined manner. Expressing the quantities @ in terms of @ and eliminating @ 
with the aid of Eq. (1.2), after transformations we obtain 

.~-=mo(l -- OJ/[1 --fq-l-mn(Ot - -Oi l .  : 

In the absence of deformations @i = 02 = 0, m = m0. We will term deformations of the 
second kind conditions such that there are overflows of liquid on the scale of the volume V, 
i.e., relative displacement of phases occurs, and due to liquid filtration tangent stresses 
appear on the interphase boundary S,. This is accompanied by loss of conservation of phase 
mass within the volume V. We note that for conservation of the solid phase overpacking of 
the particles must not:exist. As before, Eq. (1.2) is valid. 

2. Let the deformation conditions correspond to a deformation of the first kind. In 
addition, tangent stresses are absent at the contacts. This can be achieved �9 if before de- 
formation the grains are abie to move relative to each other. And the value of the deforma- 
tion and state of the surface create conditions for the absence of significant tangent stresses. 
These conditions permit us to write Fij = F,~ij. The grains are elastic equal-sized spheres, 
packed in a manner such that the close order is close to a cubical structure. We describe 
the deformation of the contacting spheres with the results of the Hertz problem. We recall 
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that the radius of the contact surface r and the degree of warping of the spheres ~ (see Fig. 
I), we have [9] 

r =  T Q  G ,,) , 6 =  ~3 ? ~ t ,  ~ ] '  ' ( 2 . 1 )  

where G is the modulus of elasticity; Q = 2wr2o*; o* is the stress at the contact, or accord- 
ing to [7], the effective stress. In the simplest possible case we write o* TM F, -- p. Con- 
sidering the relationship of the quantities ~, G to Young's modulus E, we transfer Eq. (2.1) 
to the form 

4 o* ( 4  ~T*'] 2 
r:::--(~-~-R o, 5 = \-':;-'~-~'o z, / lto, 

where R0 is the sphere radius. 

Thus, due to the idealization of the medium used, the value of the solid phase deforma- 
tion can be calculated by averaging the stress tensor over the volume of a sphere. We per- 
form this averaging with the aid of the expression 

 !S.I . . . .  <Tu> = 3 d R  dL TdR"sm- q~dq~. 

0 0 

We will note that partial spatial averaging of the structure was performed by transfor- 
mation from inhomogeneous particles to spherically formed particles of equal size. Thus, in 
Eq. (2.2) on the left we have the completely averaged expression for the tensor components 
<Tij>. The components of the tensor Tij in the integrand can be found by solving the boundary 
problem for deformation of an elastic medium with piecewise-inhomogeneous loading, as shown 
in Fig. I. We will use the known solution of this problem presented in [9]. The condition 
of absence of tangent stresses permits writing an expression for the radial vector PR within 
the sphere in the form 

1 ( R '~,~-~ (2,,. + t) (2 ,~-  2) PR=~Z t2nq-l)<p-~o/ dX,' drp'P~(K,r 2-[n~=(i_2v) n+i_~lLkRo) 
n = l  0 ' 0 n = 3  

2 ~  

i R V - q  f . . . . . .  ' ' - - t < ]  j j  d X ' .  dq /P~ (%', tp')llPn.,(y)-}" el{eRPn_,(?)-}-eRe_aPu('?)--(eReRj-eRel{)Pn--1 

o o ( 2 . 3 )  
? = cos cp cos qF + sin (p sin qF cos (X - -  E'), 

where ~', X' are spherical coordinates permitting the definition of the boundary condition on 
I T! 

the sphere surface; Pn, Pn-~, Pn-2, Pn-l, Pn are Legendre polynomials; I is a unit tensor; 
eR, e~ are unit vectors. The expression for the sum of the main stresses [9] will be 

a-- T~" ~ 'n~" -- (l -- 2v) nq-l--V\~o/ oodL' dr162 ]. (2.4) 
'tL= L 0 O 

Thus the components Tij will be completely defined by multiplying the left side of Eq. 
(2.3) by the unit vectors eR, %,e w. It can easily be proved that only the product eR.P R = TRR- 
is nonzero. We will divide the limits of the double integral in Eq. (2.3) in accordance with 

the boundary condition 

j ; 17 0 i'] dU d q / =  d(cos(p').-i- dK -F 
'o h'/ 0 L r /R  o -IURo_I 

rarcigr/R~ i ~ ] 

ar~'tg h/r ~- arctg "P/h a4 ar~tg h/r 2:t-- arcf.g r/h j 
r/R o lal'c~ih/r;~--arctgr/h~2rarc~gh/r2~--alcLgr/hl r/B o 

-7i/~ o Larctgrlh ~t--arctghir a-}-arctg rib 2~--arctghi,'J _r)R ~ 

Substituting Eq. (2.5) in Eqs. (2.3), (2.4), differentiating in the expressions for Pn, and 
maintaining at least six terms in the infinite series of Eq. (2.3), we write 
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. ' * {  ( h , )  ( hll_~ ( 3  h hS ~ r r3 ~lo(rt'~, , r _~) (Bo ) ___ __ __ , , __ ~ , __ , , at.ctI...~ - ~> a rc t  I q_ r r 3 

, ) ( h = r 3 h, h.:~ __ + ,.s , .,__r a r c t g ' 7 "  - -  a r c tg  ~ + 2 ,3 3RI] a r c t g  h _ a r c t  . 
+ - +~  Ro 3R I no 3~--~o~ T-~o 

For the sum of the normal stresses 

IT k-~ -- -hi 

16 (hg_a L~ i6 "h h I rS__z_ 32 r Z 32 { r r 3 '~ a r e t g T  

+ v k = l  =17 + v  -Wo+3=l+= o + = =I + (2.7) 

Then performing a number of operations including spatial averaging over the volume of a par- 
ticle (4/3)~R~ with the aid of Eq. (2.2), neglecting quantities in Eqs. (2.6), (2.7) small in 

r 4 o* 
comparison to the value (or162 2 and considering the equality 1~ o - 3 n--~-, we obtain simplified 
expressions 

<TRR > p (0".83 + '~  '=P 1 2 . 4 5 - ~ )  ; = 1. ,~o --~- - -  ( 2 . 8 )  

o = p (2 ,5 ,  -1- 27,3 4 - -  2 7 . 3 - ~ ) .  (2.9) 

3. Figure 2 shows the dependence of the radial component of the tensor <TRR> on the 
quantities P, F,. In the calculations, here and below we use the values E = 3.5-10 I~ Pa, 
p0 = 3.1251108 Pa, m = 0.2, which correspond to a sand medium, saturated with water. The 
relative contribution of these quantities to the component <TRR> are based on choice of a 
boundary condition on the sphere surface, i.e., on the character of Eqs. (2.8), (2.9), ob- 
tained by spatial averaging of Eq. (2.2), and depends on the ratio between the contact area 
and the sphere surface. It is thus related to the structure of the medium. Comparison of 
Eqs. (2.8) and (2.9) allows us to write the approximate expression <TRR> = 0/3, which indi- 
cates the isotropic character of solid phase stress distribution. This result could be ex- 
pected from the fact that no limitations were imposed on the relative location of the spheres 
within the volume. We note that the contributions of p and F, to <TRR> are not the same, and 
in the general case are nonlinear in character. The uncertainty of Eqs. (2.8), (2.9) is quite 
high, due to the poor convergence of the infinite series in Eq. (2.3). Substituting Eq. (2.9) 
in the expression for @I and the quantities @i, @2 from Eq. (1.1) in Eq. (1.2), we obtain 

~0-m,o)(o.83+~2.45 p r , ~  ,~ ] p[ ( I - - ~ ' - - ~  y - - 1 2 , 4 5  T ) - } -  ~ In i q - ~ 0  . (3.1) 

This is the change in total deformation of the volume V as a function of the stresses p and 
F,, i.e., the generalized equation of state. The behavior of this function for the conditions 
selected is shown in Fig. 3. The curve @(p, F,) has a nonlinear character even for relatively 
monotonic elastic properties of the component phases. In [2] the dependence of the modulus 
of volume compression of the medium on the pressure p with an exponent of I/6 was explained 
only by the sphere deformation conditions at the contact areas. However, it follows from 
Eq. (3.1) that the term describing the compressibility of the liquid phase also produces a 
contribution to the quantity @. In other words, elastic compression of the given two-phase 
medium is caused by both deformation of the spheres in the contact region, i.e., the struc- 
ture of the medium, and the compressibility of the liquid. In fact, in Eq. (1.1) the value 
of ~ for water is quite close to I/6, which produces a dependence in Eq. (3.1) corresponding 
to the experimental data of [2]. 

Experimental values of parameters describing the elastic state of a saturated porous me- 
dium within the framework of the phenomenological Biot--Nikolaevskii model were presented in 
[10]. Using the results obtained, we calculate the compressibility parameter ~ (5 in the 
notation of [10]): 
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Correspondingly, for the parameter ~ we have 

F " ( i  ~ 2v) E ~ 3 . , O.8oE m0 ( 3 . 3 )  

~ = - - -~ " ~ + .12..~5 (l __ mo) ap ( l + ipo ) po 

These expressions are depicted in Fig. 4. The character of the dependence of the rela- 
tive value of Eq. (3.3) on p corresponds qualitatively to experiment. Quantitative diver- 
gence is caused by the form of Eq. (2.8), i.e., the microstructure. In particular, the form 
of Eq~ (2.8) does not permit analysis of deformation at p = 0. 

The difference in the compressibility parameter as a function of pressure given by Eq. 
(3.2) from the results obtained in [10] is indicative of the simplification used in the pres- 
ent study. Under real conditions deformation of the medium under study is characterized in 
the initial stage by the effect of the inelastic component (overpacking of the spheres). 

Thus we have examined the features of deformation of a two-phase medium consisting of 
contacting elastic particles submerged in a compressible liquid. The absence of any effect 
of grain diameter on deformation is connected to the spatial averaging performed and the use 
of the basic approximations of the mechanics of inhomogeneous media [7]. The amount of de- 
formation of the given medium is affected significantly by its structure (particle size and 
form, geometry of gaps, etc.). This structure determines the form of Eqs. (2.8), (2.9). In 
particular, calculation of the change in porosity is possible only for some fixed ordered 
structure. 

Moreover, deformation in the particle contact region produces the dominant contribution 
to the character of the nonlinear overall deformation of the medium. With a number of con- 
tacts corresponding to cubical packing, the value of the deformation of a granular sand me- 
dium saturated by water is determined by pore pressure. 
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EQUATIONS OF MOTION OF GRANULAR MEDIA 

B. P. Sibiryakov UDC 534.21 

Acoustical studies of granular media used in petroleum and gas collectors have recently 
uncovered a number of unusual phenomena. Thus in highly porous bodies with empty or gas- 
saturated voids, the ratio of the velocities of S and P waves is often inexplicably large 
(Vs/V P > I//2), which corresponds formally to negative values of the Poisson coefficient. 
According to data of [I] and other studies the value of Vs/Vp sometimes exceeds 0.75, i.e., 
the Poisson coefficient is less than--0.3. Moreover, wave velocities measured by various 
authors in the same specimens differ among themselves greatlY (up to 10-15%), although in 
"good" test specimens (metallic ones, for example), they practically coincide. The experi- 
mental data indicate the insufficient development of physical theories of weak wave propaga- 
tion in granular media such as hydrocarbon collectors. 

Granular media possess two important unique features. First the linear dimensions of 
the grains allow introduction of a new dimensionless characteristic differing from the poros- 
ity f, which describes the pore space, namely ~ = o0r0/3, o0, the specific surface of the 
porous body, where r 0 is the mean grain radius. It has been proven by integral geometry 
that 0 ~ n ~ I -- f. Second, the presence of contacts between grains and sections of grains 
free from stress leads to a comple x stressed state in each grain taken individually, so that 
aside from the mean (large scale) field, which changes markedly at distances of the order of 
a wavelength, a fluctuation field develops, which varies significantly at distance of the 
order of the individual grain size. Development of the fluctuation field leads to scattering 
of the energy contained in waves which are no longer purely P and S waves at each individual 
point, but only on the average. This implies that P and S waves are formed only by the aver- 
age (large scale) stress and deformation fields, while fluctuations insure scattering of 
waves and a decrease in the amplitude of the mean field. In constructing a model of a con- 
tinuous medium equivalent to a granular skeleton, the two features of the microinhomogeneous 
medium mentioned above must be considered. It is insufficient merely to require free equiv- 
alency of the media in the sense that the ratios of stress to deformation for the skeleton 
and the continuous models coincide. The presence of scattering and attenuation of the large 
scale field must lead to some wave "absorption" mechanism, produced by the scattering. 

The above considerations demand a precise solution of the problem of elastic equilibrium 
for an individual grain, which in principle can be given by the ratio of stress to deforma- 
tion at the center of the grain (i.e., the mean values of ~ and ~ in the structure) and the 
fraction of energy ~ contained in the fluctuation field referred to the mean field. These 
constants, which depend on the geometry of the pore space and material of the skeleton, allow 
transition to construction of an equation of motion of some set of particles with known mean 
values of the Lama coefficients and known fraction of the energy scattered. It can be ex- 
pected that the presence of isotropic scattering is equivalent to introduction of additional 
randomly oriented sources which collect the energy of the large scale field, attenuating the 
latter. The goal of the present study is to derive equations of motion (and equilibrium) 
for the mean field, since it is only this mean field which is recorded by any device utilizing 
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